Documentation

Init.Data.List.Nat.Range

Lemmas about List.range and List.enum #

Ranges and enumeration #

range' #

theorem List.range'_succ (s : Nat) (n : Nat) (step : Nat) :
List.range' s (n + 1) step = s :: List.range' (s + step) n step
@[simp]
theorem List.range'_one {s : Nat} {step : Nat} :
List.range' s 1 step = [s]
@[simp]
theorem List.length_range' (s : Nat) (step : Nat) (n : Nat) :
(List.range' s n step).length = n
@[simp]
theorem List.range'_eq_nil {s : Nat} {n : Nat} {step : Nat} :
List.range' s n step = [] n = 0
theorem List.mem_range' {m : Nat} {s : Nat} {step : Nat} {n : Nat} :
m List.range' s n step ∃ (i : Nat), i < n m = s + step * i
@[simp]
theorem List.mem_range'_1 {m : Nat} {s : Nat} {n : Nat} :
m List.range' s n s m m < s + n
theorem List.pairwise_lt_range' (s : Nat) (n : Nat) (step : optParam Nat 1) (pos : autoParam (0 < step) _auto✝) :
List.Pairwise (fun (x x_1 : Nat) => x < x_1) (List.range' s n step)
theorem List.pairwise_le_range' (s : Nat) (n : Nat) (step : optParam Nat 1) :
List.Pairwise (fun (x x_1 : Nat) => x x_1) (List.range' s n step)
theorem List.nodup_range' (s : Nat) (n : Nat) (step : optParam Nat 1) (h : autoParam (0 < step) _auto✝) :
(List.range' s n step).Nodup
@[simp]
theorem List.map_add_range' (a : Nat) (s : Nat) (n : Nat) (step : Nat) :
List.map (fun (x : Nat) => a + x) (List.range' s n step) = List.range' (a + s) n step
theorem List.map_sub_range' {step : Nat} (a : Nat) (s : Nat) (n : Nat) (h : a s) :
List.map (fun (x : Nat) => x - a) (List.range' s n step) = List.range' (s - a) n step
theorem List.range'_append (s : Nat) (m : Nat) (n : Nat) (step : Nat) :
List.range' s m step ++ List.range' (s + step * m) n step = List.range' s (n + m) step
@[simp]
theorem List.range'_append_1 (s : Nat) (m : Nat) (n : Nat) :
List.range' s m ++ List.range' (s + m) n = List.range' s (n + m)
theorem List.range'_sublist_right {step : Nat} {s : Nat} {m : Nat} {n : Nat} :
(List.range' s m step).Sublist (List.range' s n step) m n
theorem List.range'_subset_right {step : Nat} {s : Nat} {m : Nat} {n : Nat} (step0 : 0 < step) :
List.range' s m step List.range' s n step m n
theorem List.getElem?_range' (s : Nat) (step : Nat) {m : Nat} {n : Nat} :
m < n(List.range' s n step)[m]? = some (s + step * m)
@[simp]
theorem List.getElem_range' {n : Nat} {m : Nat} {step : Nat} (i : Nat) (H : i < (List.range' n m step).length) :
(List.range' n m step)[i] = n + step * i
theorem List.range'_concat {step : Nat} (s : Nat) (n : Nat) :
List.range' s (n + 1) step = List.range' s n step ++ [s + step * n]
theorem List.range'_1_concat (s : Nat) (n : Nat) :
List.range' s (n + 1) = List.range' s n ++ [s + n]

range #

theorem List.reverse_range' (s : Nat) (n : Nat) :
(List.range' s n).reverse = List.map (fun (x : Nat) => s + n - 1 - x) (List.range n)
theorem List.range'_eq_map_range (s : Nat) (n : Nat) :
List.range' s n = List.map (fun (x : Nat) => s + x) (List.range n)
@[simp]
theorem List.length_range (n : Nat) :
(List.range n).length = n
@[simp]
theorem List.range_eq_nil {n : Nat} :
List.range n = [] n = 0
@[simp]
theorem List.range_sublist {m : Nat} {n : Nat} :
(List.range m).Sublist (List.range n) m n
@[simp]
theorem List.range_subset {m : Nat} {n : Nat} :
@[simp]
theorem List.mem_range {m : Nat} {n : Nat} :
theorem List.pairwise_lt_range (n : Nat) :
List.Pairwise (fun (x x_1 : Nat) => x < x_1) (List.range n)
theorem List.pairwise_le_range (n : Nat) :
List.Pairwise (fun (x x_1 : Nat) => x x_1) (List.range n)
theorem List.getElem?_range {m : Nat} {n : Nat} (h : m < n) :
(List.range n)[m]? = some m
@[simp]
theorem List.getElem_range {n : Nat} (m : Nat) (h : m < (List.range n).length) :
(List.range n)[m] = m
theorem List.range_succ (n : Nat) :
List.range n.succ = List.range n ++ [n]
theorem List.range_add (a : Nat) (b : Nat) :
List.range (a + b) = List.range a ++ List.map (fun (x : Nat) => a + x) (List.range b)
theorem List.take_range (m : Nat) (n : Nat) :
theorem List.nodup_range (n : Nat) :
(List.range n).Nodup

iota #

@[simp]
theorem List.length_iota (n : Nat) :
(List.iota n).length = n
@[simp]
theorem List.mem_iota {m : Nat} {n : Nat} :
m List.iota n 1 m m n
theorem List.pairwise_gt_iota (n : Nat) :
List.Pairwise (fun (x x_1 : Nat) => x > x_1) (List.iota n)
theorem List.nodup_iota (n : Nat) :
(List.iota n).Nodup

enumFrom #

@[simp]
theorem List.enumFrom_singleton {α : Type u_1} (x : α) (n : Nat) :
List.enumFrom n [x] = [(n, x)]
@[simp]
theorem List.enumFrom_eq_nil {α : Type u_1} {n : Nat} {l : List α} :
List.enumFrom n l = [] l = []
@[simp]
theorem List.enumFrom_length {α : Type u_1} {n : Nat} {l : List α} :
(List.enumFrom n l).length = l.length
@[simp]
theorem List.getElem?_enumFrom {α : Type u_1} (n : Nat) (l : List α) (m : Nat) :
(List.enumFrom n l)[m]? = Option.map (fun (a : α) => (n + m, a)) l[m]?
@[simp]
theorem List.getElem_enumFrom {α : Type u_1} (l : List α) (n : Nat) (i : Nat) (h : i < (List.enumFrom n l).length) :
(List.enumFrom n l)[i] = (n + i, l[i])
theorem List.mk_add_mem_enumFrom_iff_getElem? {α : Type u_1} {n : Nat} {i : Nat} {x : α} {l : List α} :
(n + i, x) List.enumFrom n l l[i]? = some x
theorem List.mk_mem_enumFrom_iff_le_and_getElem?_sub {α : Type u_1} {n : Nat} {i : Nat} {x : α} {l : List α} :
(i, x) List.enumFrom n l n i l[i - n]? = some x
theorem List.le_fst_of_mem_enumFrom {α : Type u_1} {x : Nat × α} {n : Nat} {l : List α} (h : x List.enumFrom n l) :
n x.fst
theorem List.fst_lt_add_of_mem_enumFrom {α : Type u_1} {x : Nat × α} {n : Nat} {l : List α} (h : x List.enumFrom n l) :
x.fst < n + l.length
theorem List.map_enumFrom {α : Type u_1} {β : Type u_2} (f : αβ) (n : Nat) (l : List α) :
@[simp]
theorem List.enumFrom_map_fst {α : Type u_1} (n : Nat) (l : List α) :
List.map Prod.fst (List.enumFrom n l) = List.range' n l.length
@[simp]
theorem List.enumFrom_map_snd {α : Type u_1} (n : Nat) (l : List α) :
List.map Prod.snd (List.enumFrom n l) = l
theorem List.snd_mem_of_mem_enumFrom {α : Type u_1} {x : Nat × α} {n : Nat} {l : List α} (h : x List.enumFrom n l) :
x.snd l
theorem List.mem_enumFrom {α : Type u_1} {x : α} {i : Nat} {j : Nat} (xs : List α) (h : (i, x) List.enumFrom j xs) :
j i i < j + xs.length x xs
theorem List.map_fst_add_enumFrom_eq_enumFrom {α : Type u_1} (l : List α) (n : Nat) (k : Nat) :
List.map (Prod.map (fun (x : Nat) => x + n) id) (List.enumFrom k l) = List.enumFrom (n + k) l
theorem List.map_fst_add_enum_eq_enumFrom {α : Type u_1} (l : List α) (n : Nat) :
List.map (Prod.map (fun (x : Nat) => x + n) id) l.enum = List.enumFrom n l
theorem List.enumFrom_cons' {α : Type u_1} (n : Nat) (x : α) (xs : List α) :
List.enumFrom n (x :: xs) = (n, x) :: List.map (Prod.map (fun (x : Nat) => x + 1) id) (List.enumFrom n xs)
theorem List.enumFrom_map {α : Type u_1} {β : Type u_2} (n : Nat) (l : List α) (f : αβ) :
theorem List.enumFrom_append {α : Type u_1} (xs : List α) (ys : List α) (n : Nat) :
List.enumFrom n (xs ++ ys) = List.enumFrom n xs ++ List.enumFrom (n + xs.length) ys
theorem List.enumFrom_eq_zip_range' {α : Type u_1} (l : List α) {n : Nat} :
List.enumFrom n l = (List.range' n l.length).zip l
@[simp]
theorem List.unzip_enumFrom_eq_prod {α : Type u_1} (l : List α) {n : Nat} :
(List.enumFrom n l).unzip = (List.range' n l.length, l)

enum #

theorem List.enum_cons :
∀ {α : Type u_1} {a : α} {as : List α}, (a :: as).enum = (0, a) :: List.enumFrom 1 as
theorem List.enum_cons' {α : Type u_1} (x : α) (xs : List α) :
(x :: xs).enum = (0, x) :: List.map (Prod.map (fun (x : Nat) => x + 1) id) xs.enum
@[simp]
theorem List.enum_eq_nil {α : Type u_1} {l : List α} :
l.enum = [] l = []
@[simp]
theorem List.enum_singleton {α : Type u_1} (x : α) :
[x].enum = [(0, x)]
@[simp]
theorem List.enum_length :
∀ {α : Type u_1} {l : List α}, l.enum.length = l.length
@[simp]
theorem List.getElem?_enum {α : Type u_1} (l : List α) (n : Nat) :
l.enum[n]? = Option.map (fun (a : α) => (n, a)) l[n]?
@[simp]
theorem List.getElem_enum {α : Type u_1} (l : List α) (i : Nat) (h : i < l.enum.length) :
l.enum[i] = (i, l[i])
theorem List.mk_mem_enum_iff_getElem? {α : Type u_1} {i : Nat} {x : α} {l : List α} :
(i, x) l.enum l[i]? = some x
theorem List.mem_enum_iff_getElem? {α : Type u_1} {x : Nat × α} {l : List α} :
x l.enum l[x.fst]? = some x.snd
theorem List.fst_lt_of_mem_enum {α : Type u_1} {x : Nat × α} {l : List α} (h : x l.enum) :
x.fst < l.length
theorem List.snd_mem_of_mem_enum {α : Type u_1} {x : Nat × α} {l : List α} (h : x l.enum) :
x.snd l
theorem List.map_enum {α : Type u_1} {β : Type u_2} (f : αβ) (l : List α) :
List.map (Prod.map id f) l.enum = (List.map f l).enum
@[simp]
theorem List.enum_map_fst {α : Type u_1} (l : List α) :
List.map Prod.fst l.enum = List.range l.length
@[simp]
theorem List.enum_map_snd {α : Type u_1} (l : List α) :
List.map Prod.snd l.enum = l
theorem List.enum_map {α : Type u_1} {β : Type u_2} (l : List α) (f : αβ) :
(List.map f l).enum = List.map (Prod.map id f) l.enum
theorem List.enum_append {α : Type u_1} (xs : List α) (ys : List α) :
(xs ++ ys).enum = xs.enum ++ List.enumFrom xs.length ys
theorem List.enum_eq_zip_range {α : Type u_1} (l : List α) :
l.enum = (List.range l.length).zip l
@[simp]
theorem List.unzip_enum_eq_prod {α : Type u_1} (l : List α) :
l.enum.unzip = (List.range l.length, l)