Documentation

Batteries.Data.Fin.Fold

theorem Fin.foldlM_eq_foldlM_finRange {m : Type u_1 → Type u_2} {α : Type u_1} {n : Nat} [Monad m] (f : αFin nm α) (x : α) :
@[deprecated Fin.foldlM_eq_foldlM_finRange]
theorem Fin.foldlM_eq_foldlM_list {m : Type u_1 → Type u_2} {α : Type u_1} {n : Nat} [Monad m] (f : αFin nm α) (x : α) :

Alias of Fin.foldlM_eq_foldlM_finRange.

theorem Fin.foldrM_eq_foldrM_finRange {m : Type u_1 → Type u_2} {n : Nat} {α : Type u_1} [Monad m] [LawfulMonad m] (f : Fin nαm α) (x : α) :
@[deprecated Fin.foldrM_eq_foldrM_finRange]
theorem Fin.foldrM_eq_foldrM_list {m : Type u_1 → Type u_2} {n : Nat} {α : Type u_1} [Monad m] [LawfulMonad m] (f : Fin nαm α) (x : α) :

Alias of Fin.foldrM_eq_foldrM_finRange.

theorem Fin.foldl_eq_foldl_finRange {α : Type u_1} {n : Nat} (f : αFin nα) (x : α) :
@[deprecated Fin.foldl_eq_foldl_finRange]
theorem Fin.foldl_eq_foldl_list {α : Type u_1} {n : Nat} (f : αFin nα) (x : α) :

Alias of Fin.foldl_eq_foldl_finRange.

theorem Fin.foldr_eq_foldr_finRange {n : Nat} {α : Type u_1} (f : Fin nαα) (x : α) :
@[deprecated Fin.foldr_eq_foldr_finRange]
theorem Fin.foldr_eq_foldr_list {n : Nat} {α : Type u_1} (f : Fin nαα) (x : α) :

Alias of Fin.foldr_eq_foldr_finRange.