theorem
List.chain_split
{α : Type u_1}
{R : α → α → Prop}
{a b : α}
{l₁ l₂ : List α}
:
List.Chain R a (l₁ ++ b :: l₂) ↔ List.Chain R a (l₁ ++ [b]) ∧ List.Chain R b l₂
theorem
List.chain_append_cons_cons
{α : Type u_1}
{R : α → α → Prop}
{a b c : α}
{l₁ l₂ : List α}
:
List.Chain R a (l₁ ++ b :: c :: l₂) ↔ List.Chain R a (l₁ ++ [b]) ∧ R b c ∧ List.Chain R c l₂