Documentation

Regex.Data.Char.Basic

max valid char

Equations
Instances For

    incr char up to max valid char Char.max

    Equations
    Instances For

      min valid char

      Equations
      Instances For

        decr char to min valid char Char.min

        Equations
        Instances For
          theorem Char.eq_le {c1 c2 : Char} (h : c1 = c2) :
          c1 c2
          theorem Char.lt_le {c1 c2 : Char} (h : c1 < c2) :
          c1 c2
          theorem Char.succ_lt {c1 c2 : Char} (h : c2.val.toNat - c1.val.toNat = 1) :
          c1 < c2
          theorem Char.min_le (c : Char) :
          theorem Char.le_max (c : Char) :
          theorem Char.one_le_of_lt {c1 c2 : Char} (h : c1 < c2) :
          1 c2.val
          theorem Char.succ_lt_lt {c1 c2 : Char} (h : 1 + c1.toNat < c2.toNat) :
          c1 < c2
          theorem Char.succ_lt_succ_lt {c1 c2 : Char} (h : 1 + c1.toNat < c2.toNat) (hs : (c1.val + 1).isValidChar) :
          { val := c1.val + 1, valid := hs } < c2
          theorem Char.lt_pred_le {c1 c2 : Char} (h : c1 < c2) :
          c1.val c2.val - 1
          theorem Char.lt_succ_le {c1 c2 : Char} (h : c1 < c2) :
          c1.val + 1 c2.val
          theorem Char.succ_add_le__pred {c1 c2 : Char} (h : 1 + c1.toNat < c2.toNat) (hs : (c1.val + 1).isValidChar) :
          c1.val + 1 c2.val - 1
          theorem Char.incr_le_decr {c1 c2 : Char} (h : 1 + c1.toNat < c2.toNat) :